浅谈MATLAB在信号与系统分析中的应用 论文写法 本人新手
相关论文:
Vc++下如何利用Matlab工具箱进行数字信号处理
摘要: 本文详述了在Vc环境下如何利用Matlab工具箱进行数字信号处理,全文以Matlab工具箱中功率谱密度分析函数为例,介绍了通过Matlab自带的引擎、Matlab自身的编译器以及利用MathTools公司的Matcom进行对工具箱函数的调用。
关键词:Matlab M-文件 引擎 编译器 Matcom Vc++
Matlab的信号处理工具箱是信号算法文件的集合,它处理的基本对象是信号与系统,信号处理工具箱位于目录、Toolbox\Signal下,利用工具箱中的文件可以实现信号的变换、滤波、谱估计、滤波器设计等。在其它的环境如Vc下如果能调用Matlab工具箱中的文件,会大大地加快一些算法的实现,同时其可靠性也很高。
利用Matlab引擎
Matlab引擎采用客户和服务器计算方式,在运用中,Vc的C语言或C++语言的程序作为前端客户机,它向Matlab引擎传递命令和数据信息,并从Matlab引擎接收数据信息,它提供了下列几个函数: engOpen, engGetArray, engPutArray, engEvaString,
engOutputBuffer ,engClose与客户机进行交互。
下面例程是在Vc下建一个基于对话框的应用程序,在对话框中设置一个Button控件OnMatlabEngine.,在对话框 .cpp文件中加入”engine.h” 和“math.h” 头文件,下面给出部分程序清单。
Void CtestmatlabDlg::OnMatlabEngine(){
Engine *ep;
mxArray* T=NULL,*result=NULL,*mFs=NULL,*mnfft= NULL;
double datax[1024];
char buffer[1024];
for(int j=0;j<1024;j++)//注:如通过采集卡采集数据可将采集的数据放在datax[]数组中,此循环就不需要
{
double samt=(double)(1.0/1024);
datax[j]=sin(2.0*63.0*samt*3.1415926+1.15*3.1415926);
}
double *pPxx,*pFxx;
if(!(ep=engOpen( \0 ))){//打开Matlab引擎,建立与本地Matlab的连接
fprintf(stderr, \n Can t start MATLAB engine\n );
exit(-1);
}
double Fs[1]={1024};//因为Matlab所有参与运算的参数都是矩阵的形式,因而下列几行将参数转变
double nfft[1]={1024};//成Matlab可接受的矩阵形式。
T=mxCreateDoubleMatrix(1,1024,mxREAL);
mnfft=mxCreateDoubleMatrix(1,1,mxREAL);
mFs=mxCreateDoubleMatrix(1,1,mxREAL);
mxSetName(T, T );
mxSetName(mnfft, mnfft );
mxSetName(mFs, mFs );
memcpy((char*)mxGetPr(T),(char*)datax, 1024*sizeof(double));
memcpy((char*)mxGetPr(mnfft),(char*)nfft, sizeof(double));
memcpy((char*)mxGetPr(mFs),(char*)Fs,1*sizeof(double));
engPutArray(ep,T); //将转化的参数放入引擎中,此时可在Matlab command窗口下查看此参数
engPutArray(ep,mnfft);
engPutArray(ep,mFs);
engEvalString(ep, [pxx,fo]=psd(T,mnfft,mFs); ); //利用引擎执行工具箱中文件
engOutputBuffer(ep,buffer,512); //如只想看显示图形,可将返回参数去掉,psd无返回参数缺省情况下会自动画图形
result=engGetArray(ep, pxx );//取出引擎中的数据放在所指的区域中供后续处理
pPxx=mxGetPr(result);
result=engGetArray(ep, fo );
pFxx=mxGetPr(result);
engEvalString(ep, plot(fo,10*log10(pxx)); );//利用引擎画图
engEvalString(ep, title( 功率谱分析 ); );
engEvalString(ep, xlabel( Hz ); );
engEvalString(ep, ylable( db ); );
mxDestroyArray(T); //释放内存
mxDestroyArray(mFs);
mxDestroyArray(mnfft);
mxDestroyArray(result);
engEvalString(ep, close; );
engClose(ep);
}
上述程序在Vc下编译需要将 libeng.dll和libmx.dll两个动态库利用以下的命令:
lib/def:<自己的Matlab的安装路径,下同>e:\ Matlab\extern\include\*.def /machine:ix86 /out:*.lib来生成程序所需的静态连接库libeng.lib和libmx.lib,将libeng.lib和libmx.lib所在的目录加入Vc++ project/link/object/library modules下即可。
利用Matlab自身的编译器调用工具箱中的函数
Matlab的编译器可将Matlab的M文件转换为为C或C++的源代码以产生完全脱离Matlab运行环境的独立的运用程序,但Matlab本身的资料说明编译器如用来建立独立的运用程序,不能调用Matlab工具箱中的函数,这非常不利于搞一些特殊的算法。本人研究了一段时间发现,工具箱中的函数既然是M文件就一定可以用编译器来编译,以提供如Vc的调用函数,但是编译器只能编译一个独立的M文件,即这个 M文件不依赖于其他的M文件。如果M文件中又调用了其他的M文件,可将被调用的M文件拷贝到调用M文件的相应位置,作适当的改动就可以用于编译器编译。编译器不支持图形函数,所以M文件中如有图形函数需注释掉。
当Matlab的编译器mcc加入适当的参数-e(mcc –e *.*)或-p(mcc –p *.*)就可生成将输入的M文件转换为适用于特定运用的C或C++源代码。这样如果要在Vc下编译通过,还需连入以下几个库libmmfile.dll, libmatlb.dll, libmcc.dll, libmat.dll. libmx.dll. mibut.dll 以及Matlab C MATH库,建议采用前述的方法将动态连接改为静态连接。对于C/C++编译环境的设置,在Matlab command窗口下运行mex –setup 然后依提示操作,而对于C/C++连接环境的设置,运行mbuild –setup依提示操作即可。
下面给出利用编译器将Matlab工具箱中psd.m文件生成可供Vc调用的函数。
将psd.m文件拷贝一份至Matlab\bin目录下,改写相应调用的M文件如nargchk.m, hanning.m等。为生成的代码简洁,对于采集数据处理输入参数很明了的情况下可作大量的删减,最终使psd.m成为一个不依赖于其他M文件的独立的M文件,注意千万注释掉作图代码,最终改成如下形式,限于篇幅给出关键的几步:
function [Pxx,f]=psd(Fs,nfft,noverlap,x)
window=o,5*(1-cos(2*pi*(1:nfft)’/(nffft+1)));//hanning 窗
dflag=’none’;
window=window(;)
………………………………….
以上只要稍懂Matlab语言和信号处理知识就可完成这项工作。
假设上述代码重新存为testwin.m,在Matlab command 窗口下设置好环境参数运行mcc –e testwin,则可在Matlab\bin下生成testwin.c ,如运行mcc –p testwin 则生成testwin.cpp.
Vc下建立一个基于对话框的文件,然后在对话框里加一个Button控件OnButtonPsd
将上述生成的.c文件的头文件加入到工程的.cpp中,且将#ifdef_cplusplus
extern “c”{
#end if
c代码声明加入Vc的包含文件和生成的.C的包含文件之间
将#ifdef_cplusplus
}
#end if加入.cpp文件未尾
为了简洁且便于处理将生成的c函数稍改动,给出部分代码如下:
void CTestpsdwinDlg::OnButtonPsd(){
mxArray* x_rhs_;//指向采集数据存放区
Fs=23510;//数据采集的频率 nfft=1024;//1024点的fft
double datax[1024]//采集的数据
x_rhs_mxCreateDoubleMatrix(1,1024,mxReal);
memcpy(mxGetPr(x_rhs_),datax,1024*sizeof(double));
noverlap=512;
……………….
……………….
mccCopy(&Pxx,&Spec);
mccCopy(&f,&frevgg_vector);
for(int j=0;j<(int)(nfft/2+1);j++)
{
datap[j]=mccGetRealVectorElement(&Pxx, (j+1));//功率谱密度存于datap[]数组
dataf[j]=mccGetRealVectorElement(&f, (j+1));//相应频率存于数组dataf[]中
}
mccFreeMatrix(&Pxx);
……………….
SendMessageBox(WM_PAINT,0,0);//利用Vc下的图形函数画图
Return;
}
如上生成的程序可读性不太好,而生成的c++代码则可读性较好,但千万注意只能用 Matlab的MATH库,不可用c++的MATH库,否则编译会出错,限于篇幅在此不述。
3)利用Matcom调用工具箱中的函数
Matcom编译M文件,先将M文件按照与Matcom的cpp库的对应关系翻译为cpp源代码,然后用对应版本的c编译器将cpp文件编译成相应的exe或dll文件,所以第一次运行要指定c编译器的路径,否则无法编译,指定好的编译信息就写在Matcom\bin\matcom.ini文件中,不过这一步按装matcom时,它自动寻找编译器并将其写入matcom.ini文件中,matcom4.5版中使用TeeChart3.0 OCX控件,因而它支持图形操作。
我们依然用上述的testwin.m文件,不要将图形函数注释掉,利用Mideva来生成可被Vc调用的信号处理程序。
运行Mideva在主界面上直打开M文件,在菜单中选择compile to dll,输入testwin..在Matcom debug目录下可以找到这样的几个文件,testwin.c ,testwin.h,testwin.cpp,testwin.lib,testwin.dll,testwin.exp等。
将上述testwin.cpp和testwin.h加入工程中,project/add to project/files并且在相应的文件中加入”stdafx.h”
加连接库:Tools\option\directory\ , 选include选项,加入e:\matcom45\lib (包含matcom.h)
library选项,加入e:\matcom45\lib
4) project\add to project\files 文件类型选项选(.lib)将e:\matcom45\lib\v4501.lib加入工程中编译运行。相应代码如下:
void CtestmatcomDlg::OnpsdButton(){
double datap[512],dataf[512];
initM(MATCOM_VERSION);//初始化matcom库
Mm Fs,nfft,noverlap;//创建矩阵
Mm x=zeros(1,1024);
Fs=1024;nfft=1024;noverlap=128;
dMm(Pxx_o);dMm(f_o);//创建并命名矩阵
datax[];//数据采集的数据存于此数组中
for(int i=1;i<=1024;i++)
{
x.r(1,i)=datax[i+1];//给x阵赋值
}
testwin(Fs,nfft,noverlap,x,i_o,Pxx,f_o);//matcom生成的函数
for(i=0;i<513;i++){//取出功率谱密度分析结果
dataf[i]=f_o.r(i+1,1);
datap[i]=Pxx_o.r(i+1,1);}
exitM();
return;
}
可见利用Matcom进行M文件转换非常的容易,生成的代码可读性很好,以上的转换同时生成了可供Vc调用的动态连接库,其使用和一般的动态库一样使用。同时需指明Matcom不仅可转换独立的不依赖于其它M文件的M文件,同时可转换调用其它M文件的M文件嵌套。条件是这此M文件在同一个目录下面,如前所述的psd.m可直接用上述方法转换,生成了多个重载形式的psd函数
结论: 利用Mtlab引擎调用工具箱中的函数可节省大量的系统资源,应用程序整体性能较好,但不可脱离Matlab 的环境运行。用Matlab编译器进行工具箱函数的调用,须转换相应的M文件使其成为独立的M文件,且不支持图形函数,转换的代码可读性不太好。用Matcom 进行转换非常方便,生成的代码可读性很好,支持图形函数,且代码执行的速度比不转换平均要快1.5倍以上。以上程序在Vc++ 6.0,Matlab5.2,Matcom4.5中调试通过,以上方法在工程实践中已得到很好的运用。
仅供参考,请自借鉴
希望对您有帮助
Vc++下如何利用Matlab工具箱进行数字信号处理
摘要: 本文详述了在Vc环境下如何利用Matlab工具箱进行数字信号处理,全文以Matlab工具箱中功率谱密度分析函数为例,介绍了通过Matlab自带的引擎、Matlab自身的编译器以及利用MathTools公司的Matcom进行对工具箱函数的调用。
关键词:Matlab M-文件 引擎 编译器 Matcom Vc++
Matlab的信号处理工具箱是信号算法文件的集合,它处理的基本对象是信号与系统,信号处理工具箱位于目录、Toolbox\Signal下,利用工具箱中的文件可以实现信号的变换、滤波、谱估计、滤波器设计等。在其它的环境如Vc下如果能调用Matlab工具箱中的文件,会大大地加快一些算法的实现,同时其可靠性也很高。
利用Matlab引擎
Matlab引擎采用客户和服务器计算方式,在运用中,Vc的C语言或C++语言的程序作为前端客户机,它向Matlab引擎传递命令和数据信息,并从Matlab引擎接收数据信息,它提供了下列几个函数: engOpen, engGetArray, engPutArray, engEvaString,
engOutputBuffer ,engClose与客户机进行交互。
下面例程是在Vc下建一个基于对话框的应用程序,在对话框中设置一个Button控件OnMatlabEngine.,在对话框 .cpp文件中加入”engine.h” 和“math.h” 头文件,下面给出部分程序清单。
Void CtestmatlabDlg::OnMatlabEngine(){
Engine *ep;
mxArray* T=NULL,*result=NULL,*mFs=NULL,*mnfft= NULL;
double datax[1024];
char buffer[1024];
for(int j=0;j<1024;j++)//注:如通过采集卡采集数据可将采集的数据放在datax[]数组中,此循环就不需要
{
double samt=(double)(1.0/1024);
datax[j]=sin(2.0*63.0*samt*3.1415926+1.15*3.1415926);
}
double *pPxx,*pFxx;
if(!(ep=engOpen( \0 ))){//打开Matlab引擎,建立与本地Matlab的连接
fprintf(stderr, \n Can t start MATLAB engine\n );
exit(-1);
}
double Fs[1]={1024};//因为Matlab所有参与运算的参数都是矩阵的形式,因而下列几行将参数转变
double nfft[1]={1024};//成Matlab可接受的矩阵形式。
T=mxCreateDoubleMatrix(1,1024,mxREAL);
mnfft=mxCreateDoubleMatrix(1,1,mxREAL);
mFs=mxCreateDoubleMatrix(1,1,mxREAL);
mxSetName(T, T );
mxSetName(mnfft, mnfft );
mxSetName(mFs, mFs );
memcpy((char*)mxGetPr(T),(char*)datax, 1024*sizeof(double));
memcpy((char*)mxGetPr(mnfft),(char*)nfft, sizeof(double));
memcpy((char*)mxGetPr(mFs),(char*)Fs,1*sizeof(double));
engPutArray(ep,T); //将转化的参数放入引擎中,此时可在Matlab command窗口下查看此参数
engPutArray(ep,mnfft);
engPutArray(ep,mFs);
engEvalString(ep, [pxx,fo]=psd(T,mnfft,mFs); ); //利用引擎执行工具箱中文件
engOutputBuffer(ep,buffer,512); //如只想看显示图形,可将返回参数去掉,psd无返回参数缺省情况下会自动画图形
result=engGetArray(ep, pxx );//取出引擎中的数据放在所指的区域中供后续处理
pPxx=mxGetPr(result);
result=engGetArray(ep, fo );
pFxx=mxGetPr(result);
engEvalString(ep, plot(fo,10*log10(pxx)); );//利用引擎画图
engEvalString(ep, title( 功率谱分析 ); );
engEvalString(ep, xlabel( Hz ); );
engEvalString(ep, ylable( db ); );
mxDestroyArray(T); //释放内存
mxDestroyArray(mFs);
mxDestroyArray(mnfft);
mxDestroyArray(result);
engEvalString(ep, close; );
engClose(ep);
}
上述程序在Vc下编译需要将 libeng.dll和libmx.dll两个动态库利用以下的命令:
lib/def:<自己的Matlab的安装路径,下同>e:\ Matlab\extern\include\*.def /machine:ix86 /out:*.lib来生成程序所需的静态连接库libeng.lib和libmx.lib,将libeng.lib和libmx.lib所在的目录加入Vc++ project/link/object/library modules下即可。
利用Matlab自身的编译器调用工具箱中的函数
Matlab的编译器可将Matlab的M文件转换为为C或C++的源代码以产生完全脱离Matlab运行环境的独立的运用程序,但Matlab本身的资料说明编译器如用来建立独立的运用程序,不能调用Matlab工具箱中的函数,这非常不利于搞一些特殊的算法。本人研究了一段时间发现,工具箱中的函数既然是M文件就一定可以用编译器来编译,以提供如Vc的调用函数,但是编译器只能编译一个独立的M文件,即这个 M文件不依赖于其他的M文件。如果M文件中又调用了其他的M文件,可将被调用的M文件拷贝到调用M文件的相应位置,作适当的改动就可以用于编译器编译。编译器不支持图形函数,所以M文件中如有图形函数需注释掉。
当Matlab的编译器mcc加入适当的参数-e(mcc –e *.*)或-p(mcc –p *.*)就可生成将输入的M文件转换为适用于特定运用的C或C++源代码。这样如果要在Vc下编译通过,还需连入以下几个库libmmfile.dll, libmatlb.dll, libmcc.dll, libmat.dll. libmx.dll. mibut.dll 以及Matlab C MATH库,建议采用前述的方法将动态连接改为静态连接。对于C/C++编译环境的设置,在Matlab command窗口下运行mex –setup 然后依提示操作,而对于C/C++连接环境的设置,运行mbuild –setup依提示操作即可。
下面给出利用编译器将Matlab工具箱中psd.m文件生成可供Vc调用的函数。
将psd.m文件拷贝一份至Matlab\bin目录下,改写相应调用的M文件如nargchk.m, hanning.m等。为生成的代码简洁,对于采集数据处理输入参数很明了的情况下可作大量的删减,最终使psd.m成为一个不依赖于其他M文件的独立的M文件,注意千万注释掉作图代码,最终改成如下形式,限于篇幅给出关键的几步:
function [Pxx,f]=psd(Fs,nfft,noverlap,x)
window=o,5*(1-cos(2*pi*(1:nfft)’/(nffft+1)));//hanning 窗
dflag=’none’;
window=window(;)
………………………………….
以上只要稍懂Matlab语言和信号处理知识就可完成这项工作。
假设上述代码重新存为testwin.m,在Matlab command 窗口下设置好环境参数运行mcc –e testwin,则可在Matlab\bin下生成testwin.c ,如运行mcc –p testwin 则生成testwin.cpp.
Vc下建立一个基于对话框的文件,然后在对话框里加一个Button控件OnButtonPsd
将上述生成的.c文件的头文件加入到工程的.cpp中,且将#ifdef_cplusplus
extern “c”{
#end if
c代码声明加入Vc的包含文件和生成的.C的包含文件之间
将#ifdef_cplusplus
}
#end if加入.cpp文件未尾
为了简洁且便于处理将生成的c函数稍改动,给出部分代码如下:
void CTestpsdwinDlg::OnButtonPsd(){
mxArray* x_rhs_;//指向采集数据存放区
Fs=23510;//数据采集的频率 nfft=1024;//1024点的fft
double datax[1024]//采集的数据
x_rhs_mxCreateDoubleMatrix(1,1024,mxReal);
memcpy(mxGetPr(x_rhs_),datax,1024*sizeof(double));
noverlap=512;
……………….
……………….
mccCopy(&Pxx,&Spec);
mccCopy(&f,&frevgg_vector);
for(int j=0;j<(int)(nfft/2+1);j++)
{
datap[j]=mccGetRealVectorElement(&Pxx, (j+1));//功率谱密度存于datap[]数组
dataf[j]=mccGetRealVectorElement(&f, (j+1));//相应频率存于数组dataf[]中
}
mccFreeMatrix(&Pxx);
……………….
SendMessageBox(WM_PAINT,0,0);//利用Vc下的图形函数画图
Return;
}
如上生成的程序可读性不太好,而生成的c++代码则可读性较好,但千万注意只能用 Matlab的MATH库,不可用c++的MATH库,否则编译会出错,限于篇幅在此不述。
3)利用Matcom调用工具箱中的函数
Matcom编译M文件,先将M文件按照与Matcom的cpp库的对应关系翻译为cpp源代码,然后用对应版本的c编译器将cpp文件编译成相应的exe或dll文件,所以第一次运行要指定c编译器的路径,否则无法编译,指定好的编译信息就写在Matcom\bin\matcom.ini文件中,不过这一步按装matcom时,它自动寻找编译器并将其写入matcom.ini文件中,matcom4.5版中使用TeeChart3.0 OCX控件,因而它支持图形操作。
我们依然用上述的testwin.m文件,不要将图形函数注释掉,利用Mideva来生成可被Vc调用的信号处理程序。
运行Mideva在主界面上直打开M文件,在菜单中选择compile to dll,输入testwin..在Matcom debug目录下可以找到这样的几个文件,testwin.c ,testwin.h,testwin.cpp,testwin.lib,testwin.dll,testwin.exp等。
将上述testwin.cpp和testwin.h加入工程中,project/add to project/files并且在相应的文件中加入”stdafx.h”
加连接库:Tools\option\directory\ , 选include选项,加入e:\matcom45\lib (包含matcom.h)
library选项,加入e:\matcom45\lib
4) project\add to project\files 文件类型选项选(.lib)将e:\matcom45\lib\v4501.lib加入工程中编译运行。相应代码如下:
void CtestmatcomDlg::OnpsdButton(){
double datap[512],dataf[512];
initM(MATCOM_VERSION);//初始化matcom库
Mm Fs,nfft,noverlap;//创建矩阵
Mm x=zeros(1,1024);
Fs=1024;nfft=1024;noverlap=128;
dMm(Pxx_o);dMm(f_o);//创建并命名矩阵
datax[];//数据采集的数据存于此数组中
for(int i=1;i<=1024;i++)
{
x.r(1,i)=datax[i+1];//给x阵赋值
}
testwin(Fs,nfft,noverlap,x,i_o,Pxx,f_o);//matcom生成的函数
for(i=0;i<513;i++){//取出功率谱密度分析结果
dataf[i]=f_o.r(i+1,1);
datap[i]=Pxx_o.r(i+1,1);}
exitM();
return;
}
可见利用Matcom进行M文件转换非常的容易,生成的代码可读性很好,以上的转换同时生成了可供Vc调用的动态连接库,其使用和一般的动态库一样使用。同时需指明Matcom不仅可转换独立的不依赖于其它M文件的M文件,同时可转换调用其它M文件的M文件嵌套。条件是这此M文件在同一个目录下面,如前所述的psd.m可直接用上述方法转换,生成了多个重载形式的psd函数
结论: 利用Mtlab引擎调用工具箱中的函数可节省大量的系统资源,应用程序整体性能较好,但不可脱离Matlab 的环境运行。用Matlab编译器进行工具箱函数的调用,须转换相应的M文件使其成为独立的M文件,且不支持图形函数,转换的代码可读性不太好。用Matcom 进行转换非常方便,生成的代码可读性很好,支持图形函数,且代码执行的速度比不转换平均要快1.5倍以上。以上程序在Vc++ 6.0,Matlab5.2,Matcom4.5中调试通过,以上方法在工程实践中已得到很好的运用。
仅供参考,请自借鉴
希望对您有帮助
第一章 绪 论
§1-1 课题研究的背景
§1-2 信号与系统分析国内外研究现状
§1-3 Matlab概述
§1-4 课题研究的目的及意义
§1-5 论文主要内容及结构
第二章 MATLAB在信号与系统分析中的应用
§2-1 信号与系统分析
2-1-1 国内外关于该课题的研究现状及发展趋势
2-1-2 信号与系统分析方法分类
§2-2 Matlab在信号与系统分析中应用的简介
§2-3 本章小结
第三章 Matlab在信号与系统分析中应用模型设计
§3-1 引言
§3-2 系统分析
§3-3 模型建立(是本章重点需要扩充)
第四章 (具体实例实现)
§4-1
§4-2
§4-3 实验结果分析
§4-4 本章小结
第五章 结束语
参考文献
致 谢
最好找本MATLAB在信号与系统分析中的应用的书来看看。可以看看飞思科技产品研发中心出的一系列关于matlab应用的书,会对你有帮助的!
祝顺利!
§1-1 课题研究的背景
§1-2 信号与系统分析国内外研究现状
§1-3 Matlab概述
§1-4 课题研究的目的及意义
§1-5 论文主要内容及结构
第二章 MATLAB在信号与系统分析中的应用
§2-1 信号与系统分析
2-1-1 国内外关于该课题的研究现状及发展趋势
2-1-2 信号与系统分析方法分类
§2-2 Matlab在信号与系统分析中应用的简介
§2-3 本章小结
第三章 Matlab在信号与系统分析中应用模型设计
§3-1 引言
§3-2 系统分析
§3-3 模型建立(是本章重点需要扩充)
第四章 (具体实例实现)
§4-1
§4-2
§4-3 实验结果分析
§4-4 本章小结
第五章 结束语
参考文献
致 谢
最好找本MATLAB在信号与系统分析中的应用的书来看看。可以看看飞思科技产品研发中心出的一系列关于matlab应用的书,会对你有帮助的!
祝顺利!
围绕自己在那个学校的学习生涯来学- -
我作文不是很好 说说试试 ̄. ̄
继续阅读:浅谈MATLAB在信号与系统分析中的应用 论文写法 本人新手我作文不是很好 说说试试 ̄. ̄