急!要幂函数的运算法则,注意不是指数函数(高
运算法则口诀如下:
同底数幂的乘法:底数不变,指数相加幂的乘方。
同底数幂的除法:底数不变,指数相减幂的乘方。
幂的指数乘方:等于各因数分别乘方的积商的乘方。
分式乘方:分子分母分别乘方,指数不变。
扩展资料:
幂函数性质:
1、正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
2、负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
3、零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
参考资料:
百度百科-幂运算
百度百科-幂函数
运算法则如下:
同底数幂的乘法:底数不变,指数相加幂的乘方。
同底数幂的除法:底数不变,指数相减幂的乘方。
幂的指数乘方:等于各因数分别乘方的积商的乘方。
分式乘方:分子分母分别乘方,指数不变。
幂函数是基本初等函数之一。
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
扩展资料:
幂函数的定义域和值域及其奇偶性
幂函数的一般形式是 ,其中,a可为任何常数,但中学阶段仅研究a为有理数的情形(a为无理数时取其近似的有理数),这时可表示为 ,其中m,n,k∈N*,且m,n互质。特别,当n=1时为整数指数幂。
(1)当m,n都为奇数,k为偶数时,如 , , 等,定义域、值域均为R,为奇函数;
(2)当m,n都为奇数,k为奇数时,如 , , 等,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数;
(3)当m为奇数,n为偶数,k为偶数时,如 , 等,定义域、值域均为[0,+∞),为非奇非偶函数;
(4)当m为奇数,n为偶数,k为奇数时,如 , 等,定义域、值域均为(0,+∞),为非奇非偶函数;
(5)当m为偶数,n为奇数,k为偶数时,如 , 等,定义域为R、值域为[0,+∞),为偶函数;
(6)当m为偶数,n为奇数,k为奇数时,如 , 等,定义域为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数
参考资料:百度百科-幂运算
运算法则口诀如下:
同底数幂的乘法:底数不变,指数相加幂的乘方。
同底数幂的除法:底数不变,指数相减幂的乘方。
幂的指数乘方:等于各因数分别乘方的积商的乘方。
分式乘方:分子分母分别乘方,指数不变。
扩展资料:
幂函数的定义域和值域及其奇偶性
幂函数的一般形式是
,其中,a可为任何常数,但中学阶段仅研究a为有理数的情形(a为无理数时取其近似的有理数),这时可表示为
,其中m,n,k∈N*,且m,n互质。特别,当n=1时为整数指数幂。
(1)当m,n都为奇数,k为偶数时,如
,
,
等,定义域、值域均为R,为奇函数;
(2)当m,n都为奇数,k为奇数时,如
,
,
等,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数;
(3)当m为奇数,n为偶数,k为偶数时,如
,
等,定义域、值域均为[0,+∞),为非奇非偶函数;
(4)当m为奇数,n为偶数,k为奇数时,如
,
等,定义域、值域均为(0,+∞),为非奇非偶函数;
(5)当m为偶数,n为奇数,k为偶数时,如
,
等,定义域为R、值域为[0,+∞),为偶函数;
(6)当m为偶数,n为奇数,k为奇数时,如
,
等,定义域为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数。
参考资料来源:百度百科--幂函数
参考资料来源:百度百科--运算法则
同底数幂相除,底数不变,指数相减,即a^m/a^n=a^(m-n),
幂的乘方,底数不变,指数相乘,即(a^m)^n=a^(mn),
积的乘方,等于积里的每个因式分别乘方,然后再把所得的幂相乘,即(a^mb^n)^p=a^(mp)*b^(np).
(其中m,n,p都是整数,且a,b均不为0.)