电商用户画像建模

用户画像:通过算法聚合成一类实现用户信息标签化。

—确定的标签:比如用户购买了或者收藏了某个商品等
—猜测的标签:比如用户的性别,是男性的概率0.8,另外还有很多模型:孕妇模型,潜在汽车用户模型,用户价值模型
比如:用户活跃度(活跃,沉睡,流失,未购买)
用户分群:电脑达人,数码潮人,家庭用户,网购达人,奶爸奶妈,单身贵族,闪购用户,时尚男女等

--根据用户消费的情况来提取的客户标签,用以了解用户的消费情况,消费习惯
客户消费订单表标签:
购买信息:客户ID,第一次消费时间,最近一次消费时间,首单距今时间,尾单距今时间,近30/60/90天购买次数/购买金额(不含退拒),最大/最小消费金额,累计消费次数/金额(不含退拒)
累计使用代金券金额,客单价(含退拒),常用收货地区,常用支付方式,退货商品数量,退货商品金额,拒收商品金额/数量,最近一次退货时间,各地点下单总数/总额,上下午下单总数/总额
购物车信息:最近30天购物车商品件数/提交商品件数/购物车成功率/购物车放弃件数

提取标签的作用:
确定用户什么时候来的,多久没来了:第一次消费时间,最近一次消费时间,首单距今时间,尾单距今时间
最近消费能力:近30天购买次数(不含退拒),近30购买金额(不含退拒),近30天购买次数(含退拒),近30天购买金额(含退拒)
总体的消费情况:最小/大消费金额(可做个性化商品推荐),累计消费次数(不含退拒,可以计算客单价),累计消费金额,累计使用代金券金额(代金券爱好)
消费属性:常用收货地区,常用支付方式
购物车习惯:最近30天购物车次数,最近30天购物车提交商品件数,最近30天购物车商品件数,最近30天购物车放弃件数,最近30天购物车成功率
退货和习惯特征:退货商品数量,拒收商品数量,退货商品金额,拒收商品金额,最近一次退货时间
用户购物时间及地点习惯:各下单地点总数,各时间段下单总数

—根据客户购买类目的情况提取的客户标签,用以了解类目的购买人群情况
客户购买表标签:
客户ID,一级/二级/三级分类ID/名称,近30天/90天/180天购买类目次数/金额,累计购买类目次数/金额,累计购买类目次数/金额,近30天/90天/180天购物车某类目次数/金额,累计购买类目次数/金额,累计购物车类目次数/金额,最后一次购买类目时间/距今天数

--根据客户购买商店的情况提取的客户标签,用以了解商店及品牌的购买人群(做品牌营销等)
客户购买 商店表标签:
用户ID,商店ID/名称,品牌ID/名称,最近30天购物车次数/商品件数/提交商品件数/成功率/放弃件数,最后一次购物车时间,最近90天商品排除退拒商品件数/金额,最近90天货到付款订单数,最近90天退换件数/金额,最近90天拒收件数/金额.

用户购物模型:

用户忠诚度模型:

—将用户营销相关的常用标签放到一张表中,方便使用

客户营销信息表:
客户ID,营销手机号,第一个有效订单来源/地址/手机号,常用的手机号,常用的收货地址,不同收货地址的数量,客户分群,活跃状态,用户价值(重要,保持,流失等),纠结商品,纠结小时
主要来源表:
用户表,订单表,活动表,购物车表,客户品类分群模型,用户价值模型
客户活跃状态模型:

用户价值模型

--根据客户参与活动的情况提取的客户标签,用于了解用户对活动的参与情况,以进行活动的策划
客户活动信息表内容标签:
客户ID,用户促销明个度,满减促销敏感度,打折促销敏感度,换购促销敏感度,满赠促销敏感度,购买力分段,品牌偏好,品类偏好,颜色偏好,败家偏好,冲动偏好,累计积分,已用积分,可以积分,累计代金券数量/金额,已用代金券数量/金额,过期代金券数量/金额,可用代金券数量/金额

标签作用:
确定用户喜欢那种活动类型:用户促销敏感度,满减促销敏感度,满赠敏感度,打折促销敏感度,换购促销敏感度,团购促销敏感度等

促销敏感度模型:
--根据用户购买的活动类型订单数与金额数已判断其属于哪类人群

用户有什么偏好:店铺偏好,品牌偏好,品类偏好,颜色偏好
用户指数:购买力分段,败家指数,冲动指数
用户购买力高中低模型:
—从购物车,客单价来判断
用户购买力高中低端模型:

指数模型:

--根据客户访问的情况提取的客户标签以了解访问习惯
客户访问信息标签:
最近一次/第一次pc端访问日期/session/cookies/pv/使用浏览器/操作系统/,最近一次/ 第一次app端访问日期/操作系统,最近一次/第一次访问ip/访问城市/省份,近7天/15天/30天/60天/90天app端/pc端访问次数,近30天pc端/app端访问天数/访问并购买次数/访问pv/访问评价pv/ip数/,app及pc端各时间段访问的次数

该文章来自邱盛昌老师的慕课视频笔记:
链接: http://www.imooc.com/learn/460/