目标检测算法是什么?
目标检测算法是先通过训练集学习一个分类器,然后在测试图像中以不同scale的窗口滑动扫描整个图像;每次扫描做一下分类,判断一下当前的这个窗口是否为要检测的目标。检测算法的核心是分类,分类的核心一个是用什么特征,一个是用哪种分类器。
扩展资料:
目标检测算法可以分为:
1、背景建模法,包含时间平均模型、混合高斯模型、动态纹理背景、PCA模型、时一空联合分布背景模型
2、点检测法,包含Moravec检测器、Harris检测器 、仿射不变点检测、S IFT
3、图像分割法,包含Mean Shift方法 、Graph-cut方法、Active Contours方法
4、聚类分析法,包含支持向量机、神经网络、Adaptive Boosting
5、运动矢量场法,包含基于运动矢量场的方法
目标检测算法是计算机视觉领域的一种重要技术,它能够自动地从图像或视频中检测出特定的目标,并给出它们在图像中的位置和大小等信息。目标检测算法的应用非常广泛,例如安防监控、自动驾驶、智能物流等领域都需要使用目标检测算法。
目前,主要的目标检测算法包括:
基于传统机器学习方法的目标检测算法,如Haar特征、HOG特征和SIFT特征等。
基于深度学习的目标检测算法,如RCNN系列、YOLO系列和SSD等。
其中,RCNN系列算法包括RCNN、Fast-RCNN、Faster-RCNN和Mask-RCNN等。它们采用了候选区域提取和分类的两阶段策略,先通过区域提取方法选出可能包含目标的候选区域,然后再对这些区域进行分类和回归等操作。YOLO系列算法包括YOLO、YOLOv2、YOLOv3和YOLOv4等。它们采用了单阶段的检测策略,将图像划分为若干个网格,每个网格预测出固定数量和类别的目标,并预测它们的位置和大小。SSD算法是基于锚点的单阶段检测算法,它采用了多尺度特征图进行目标检测,并对每个特征图的每个位置设置多个锚点来检测不同大小和形状的目标。