光线跟踪算法的算法的详细描述
Arthur Appel 于 1968 年首次提出用于渲染的光线投射算法。光线投射的基础就是从眼睛投射光线到物体上的每个点,查找阻挡光线的最近物体,也就是将图像当作一个屏风,每个点就是屏风上的一个正方形。通常这就是眼睛看到的那个点的物体。根据材料的特性以及场景中的光线效果,这个算法可以确定物体的浓淡效果。其中一个简单假设就是如果表面面向光线,那么这个表面就会被照亮而不会处于阴影中。表面的浓淡效果根据传统的三维计算机图形学的浓淡模型进行计算。光线投射超出扫描线渲染的一个重要优点是它能够很容易地处理非平面的表面以及实体,如圆锥和球体等。如果一个数学表面与光线相交,那么就可以用光线投射进行渲染。复杂的物体可以用实体造型技术构建,并且可以很容易地进行渲染。
位于纽约Elmsford, New YorkMathematical Applications Group, Inc.(MAGI)的科学家首次将光线投射技术用于生成计算机图形。1966 年,为了替美国国防部计算放射性污染创立了这个公司。MAGI 不仅计算了伽马射线如何从表面进行反射(辐射的光线投射自从二十世纪四十年代就已经开始计算了),也计算了它们如何穿透以及折射。这些研究工作帮助政府确定一些特定的军事应用;建造能够保护军队避免辐射的军用车辆,设计可以重入的太空探索交通工具。在 Philip Mittelman 博士的指导下,科学家们开发了一种使用同样基本软件生成图像的方法。1972 年,MAGI 转变成了一个商业动画工作室,这个工作室使用光线投射技术为商业电视、教育电影以及最后为故事片制作三维计算机动画,他们全部使用光线投射制作了 Tron 电影中的绝大部分动画。MAGI 于 1985 年破产。 对图像中的每一个像素 {
创建从视点通过该像素的光线 初始化 最近T 为 无限大,最近物体 为 空值 对场景中的每一个物体 {
如果光线与物体相交 {
如果交点处的 t 比 最近T 小 {
设置 最近T 为焦点的 t 值 设置 最近物体 为该物体
}
}
}
如果 最近物体 为 空值
{
用背景色填充该像素
}
否则
{
对每个光源射出一条光线来检测是否处在阴影中 如果表面是反射面,生成反射光;递归 如果表面透明,生成折射光;递归 使用 最近物体 和 最近T 来计算着色函数 以着色函数的结果填充该像素
}
}