求用分治算法 二进制数大整数乘法
设X和Y都是n位的二进制整数,现在要计算它们的乘积XY。我们可以用小学所学的方法来设计一个计算乘积XY的算法,但是这样做计算步骤太多,显得效率较低。如果将每2个1位数的乘法或加法看作一步运算,那么这种方法要作O(n2)步运算才能求出乘积XY。下面我们用分治法来设计一个更有效的大整数乘积算法。
我们将n位的二进制整数X和Y各分为2段,每段的长为n/2位(为简单起见,假设n是2的幂)。
由此,X=A2n/2+B ,Y=C2n/2+D。这样,X和Y的乘积为:
XY=(A2n/2+B)(C2n/2+D)=AC2n+(AD+CB)2n/2+BD (1)
如果按式(1)计算XY,则我们必须进行4次n/2位整数的乘法(AC,AD,BC和BD),
以及3次不超过n位的整数加法(分别对应于式(1)中的加号),此外还要做2次移位(分别对应于式(1)中乘2n和乘2n/2)。所有这些加法和移位共用O(n)步运算。设T(n)是2个n位整数相乘所需的运算总数,由此可得T(n)=O(n2)。因此,用(1)式来计算X和Y的乘积并不比小学生的方法更有效。要想改进算法的计算复杂性,必须减少乘法次数。为此我们把XY写成另一种形式:
XY=AC2n+[(A-B)(D-C)+AC+BD]2n/2+BD (3)
虽然,式(3)看起来比式(1)复杂些,但它仅需做3次n/2位整数的乘法(AC,BD和(A-B)(D-C)),6次加、减法和2次移位。用解递归方程的套用公式法马上可得其解为T(n)=O(nlog3)=O(n1.59)。利用式(3),并考虑到X和Y的符号对结果的影响,我们给出大整数相乘的完整算法MULT如下:
function MULT(X,Y,n); {X和Y为2个小于2n的整数,返回结果为X和Y的乘积XY}
begin
S:=SIGN(X)*SIGN(Y); {S为X和Y的符号乘积}
X:=ABS(X);
Y:=ABS(Y); {X和Y分别取绝对值}
if n=1 then
if (X=1)and(Y=1) then return(S)
else return(0)
else begin
A:=X的左边n/2位;
B:=X的右边n/2位;
C:=Y的左边n/2位;
D:=Y的右边n/2位;
ml:=MULT(A,C,n/2);
m2:=MULT(A-B,D-C,n/2);
m3:=MULT(B,D,n/2);
S:=S*(m1*2n+(m1+m2+m3)*2n/2+m3);
return(S);
end;
end;
代码的实现
[cpp] view plaincopyprint?
/************************************************************************/
//函数功能:分治法求两个N为的整数的乘积
//输入参数:X,Y分别为两个N为整数
//算法思想:
//时间复杂度为:T(n)=O(nlog3)=O(n1.59)
/************************************************************************/
#define SIGN(A) ((A > 0) ? 1 : -1)
int IntegerMultiply(int X, int Y, int N)
{
int sign = SIGN(X) * SIGN(Y);
int x = abs(X);
int y = abs(Y);
if((0 == x) || (0 == y))
return 0;
if (1 == N)
return x*y;
else
{
int XL = x / (int)pow(10., (int)N/2);
int XR = x - XL * (int)pow(10., N/2);
int YL = y / (int)pow(10., (int)N/2);
int YR = y - YL * (int)pow(10., N/2);
int XLYL = IntegerMultiply(XL, YL, N/2);
int XRYR = IntegerMultiply(XR, YR, N/2);
int XLYRXRYL = IntegerMultiply(XL - XR, YR - YL, N/2) + XLYL + XRYR;
return sign * (XLYL * (int)pow(10., N) + XLYRXRYL * (int)pow(10., N/2) + XRYR);
}
}
int _tmain(int argc, _TCHAR* argv[])
{
int x = 1234;
int y = 4321;
cout<< x * y = <<IntegerMultiply(x, y, 4)<<endl;
cout<< x * y = <<x*y<<endl;
return 0;
}
我们将n位的二进制整数X和Y各分为2段,每段的长为n/2位(为简单起见,假设n是2的幂)。
由此,X=A2n/2+B ,Y=C2n/2+D。这样,X和Y的乘积为:
XY=(A2n/2+B)(C2n/2+D)=AC2n+(AD+CB)2n/2+BD (1)
如果按式(1)计算XY,则我们必须进行4次n/2位整数的乘法(AC,AD,BC和BD),
以及3次不超过n位的整数加法(分别对应于式(1)中的加号),此外还要做2次移位(分别对应于式(1)中乘2n和乘2n/2)。所有这些加法和移位共用O(n)步运算。设T(n)是2个n位整数相乘所需的运算总数,由此可得T(n)=O(n2)。因此,用(1)式来计算X和Y的乘积并不比小学生的方法更有效。要想改进算法的计算复杂性,必须减少乘法次数。为此我们把XY写成另一种形式:
XY=AC2n+[(A-B)(D-C)+AC+BD]2n/2+BD (3)
虽然,式(3)看起来比式(1)复杂些,但它仅需做3次n/2位整数的乘法(AC,BD和(A-B)(D-C)),6次加、减法和2次移位。用解递归方程的套用公式法马上可得其解为T(n)=O(nlog3)=O(n1.59)。利用式(3),并考虑到X和Y的符号对结果的影响,我们给出大整数相乘的完整算法MULT如下:
function MULT(X,Y,n); {X和Y为2个小于2n的整数,返回结果为X和Y的乘积XY}
begin
S:=SIGN(X)*SIGN(Y); {S为X和Y的符号乘积}
X:=ABS(X);
Y:=ABS(Y); {X和Y分别取绝对值}
if n=1 then
if (X=1)and(Y=1) then return(S)
else return(0)
else begin
A:=X的左边n/2位;
B:=X的右边n/2位;
C:=Y的左边n/2位;
D:=Y的右边n/2位;
ml:=MULT(A,C,n/2);
m2:=MULT(A-B,D-C,n/2);
m3:=MULT(B,D,n/2);
S:=S*(m1*2n+(m1+m2+m3)*2n/2+m3);
return(S);
end;
end;
代码的实现
[cpp] view plaincopyprint?
/************************************************************************/
//函数功能:分治法求两个N为的整数的乘积
//输入参数:X,Y分别为两个N为整数
//算法思想:
//时间复杂度为:T(n)=O(nlog3)=O(n1.59)
/************************************************************************/
#define SIGN(A) ((A > 0) ? 1 : -1)
int IntegerMultiply(int X, int Y, int N)
{
int sign = SIGN(X) * SIGN(Y);
int x = abs(X);
int y = abs(Y);
if((0 == x) || (0 == y))
return 0;
if (1 == N)
return x*y;
else
{
int XL = x / (int)pow(10., (int)N/2);
int XR = x - XL * (int)pow(10., N/2);
int YL = y / (int)pow(10., (int)N/2);
int YR = y - YL * (int)pow(10., N/2);
int XLYL = IntegerMultiply(XL, YL, N/2);
int XRYR = IntegerMultiply(XR, YR, N/2);
int XLYRXRYL = IntegerMultiply(XL - XR, YR - YL, N/2) + XLYL + XRYR;
return sign * (XLYL * (int)pow(10., N) + XLYRXRYL * (int)pow(10., N/2) + XRYR);
}
}
int _tmain(int argc, _TCHAR* argv[])
{
int x = 1234;
int y = 4321;
cout<< x * y = <<IntegerMultiply(x, y, 4)<<endl;
cout<< x * y = <<x*y<<endl;
return 0;
}